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Abstract Novel therapeutic agents targeting the epidermal
growth factor receptor (EGFR) have improved outcomes for
patients with colorectal carcinoma. However, these therapies
are effective only in a subset of patients. Activating mutations
in the KRAS gene are found in 30–40% of colorectal tumors
and are associated with poor response to anti-EGFR therapies.
Thus, KRASmutation status can predict which patient may or
may not benefit from anti-EGFR therapy. Although many
diagnostic tools have been developed for KRAS mutation
analysis, validated methods and standardized testing proce-
dures are lacking. This poses a challenge for the optimal use of

anti-EGFR therapies in the management of colorectal carci-
noma. Here we review the molecular basis of EGFR-targeted
therapies and the resistance to treatment conferred by KRAS
mutations. We also present guideline recommendations and a
proposal for a European quality assurance program to help
ensure accuracy and proficiency in KRAS mutation testing
across the European Union.
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Introduction

Novel classes of therapeutic agents for treating cancer are
rapidly changing clinical practice. Several of these new
drugs target specific molecules expressed by cancer cells.
One group targets members of the human epidermal
growth factor receptor (HER) family, namely, the
epidermal growth factor receptor (EGFR) and the human
epidermal growth factor receptor 2 (HER2). Both EGFR
and HER2 contribute to the development and progression
of several cancers and therefore have been explored as
targets for cancer therapy. To apply targeted therapies
optimally, it is important to recognize that their activity
differs across patient populations and to understand the
molecular mechanisms underlying these differences.

A well-defined example of how the efficacy of a targeted
therapy can vary among patients with different molecular
profiles is the use of trastuzumab (Herceptin®), an anti-
HER2 monoclonal antibody, in the treatment of breast
cancer. HER2 is overexpressed in 20–30% of malignant
breast tumors as a result of amplification of the coding gene
[1, 2]. HER2-positive status is associated with poor
prognosis and is a strong predictor of response to trastuzu-
mab therapy [1, 3]. Assessment of HER2 status has become
standard practice to identify breast cancer patients most
likely to benefit from trastuzumab therapy [3]. In parallel,
substantial progress has been made to validate HER2
testing methods and implement quality assurance to ensure
consistency and accuracy in HER2 testing [4].

Targeted therapeutic agents have also been developed for
the treatment of colorectal cancer, a leading cause of
cancer-related deaths worldwide [5]. The majority of
patients with colorectal cancer are diagnosed with locally

advanced or metastatic disease which responds poorly to
conventional forms of treatment. The drugs recently
introduced for treating colorectal cancer target the EGFR,
which is overexpressed in 50–80% of colorectal tumors [6–
10]. Although the advent of EGFR-targeted therapies has
improved outcomes for colorectal cancer patients, they are
effective in only a subset of patients [11]. Therefore, a
major challenge in optimizing EGFR-targeted treatment
options in colorectal cancer is to identify reliable bio-
markers that can predict which patients will or will not
respond to these targeted therapies.

It has become clear that mutations in the Kirsten RAS
(KRAS) gene negatively predict success of anti-EGFR thera-
pies. Gain-of-function KRAS mutations lead to EGFR-
independent activation of intracellular signaling pathways,
resulting in tumor cell proliferation, protection against apopto-
sis, increased invasion and metastasis, and activation of tumor-
induced angiogenesis [12]. Unlike HER2 testing in breast
cancer, however, there is a wide variety of testing methods and
a lack of quality assurance schemes for the assessment of
KRAS mutation status in colorectal cancer patients.

The objectives of this paper are threefold: (1) to review
the molecular basis of EGFR-targeted therapies and the
resistance to treatment conferred by KRAS mutations; (2) to
summarize the different methods available for the detection
of KRAS mutations; and (3) to propose guideline recom-
mendations and a European quality assurance (QA)
program for KRAS mutation testing in colorectal carcinoma.

Molecular basis of EGFR-targeted therapies

EGFR and cancer

EGFR is a 170-kDa transmembrane tyrosine kinase receptor
that is present in most epithelial tissues and plays an
important role in cell growth and function. Modulation of
growth factor receptors, such as the EGFR, is a key strategy
used by tumor cells to become self-sufficient and rely less on
growth signals for their transformation, proliferation and
survival. EGFR is overexpressed in many solid cancers and
has been shown by many studies to be involved in the
development and progression of human malignancies [12,
13]. Extensive research over the last few years has improved
our understanding of the oncogenic role of the EGFR and the
mechanisms of receptor activation and function. These
advances have led to the development of new treatment
modalities aimed at targeting the EGFR signaling system.

EGFR belongs to HER family of cell surface receptors
(see Fig. 1a). The HER receptor family consists of four
structurally related proteins: EGFR (also called HER1/
ErbB1), HER2 (ErbB2), HER3 (ErbB3), and HER4
(ErbB4). Each receptor is composed of three domains: (1)
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an extracellular domain that recognizes and binds ligands
specifically, such as epidermal growth factor (EGF), trans-
forming growth factor (TGF)-α and amphiregulin which
bind specifically to EGFR; (2) a hydrophobic transmem-

brane domain that is involved in interactions between cell
surface receptors; and (3) an intracellular domain that
serves as a site of tryosine kinase activity. There are at least
two exceptions to these general principles: HER2 has no
known ligand and is constitutively active, and HER3 does
not possess intrinsic tyrosine kinase activity. However, all
receptors and their specific ligands interact to form an
integrated system in which an initial signal can be amplified
and diversified into multiple cellular responses.

To activate the EGFR signaling system, three sequential
steps are generally required. First, specific ligands bind to
the extracellular domain of EGFR, resulting in a confor-
mational change. Second, this structural change allows the
receptor to form a dimer with another ligand-bound EGFR
(homodimer) or with one of the EGFR-related HER
receptors (heterodimer). Finally, receptor dimerization
causes autophosphorylation of tyrosine kinase residues
within the intracellular domain of the receptors, leading to
activation of signal transduction pathways. EGFR tyrosine
phosphorylation triggers several signaling cascades, includ-
ing the RAS-MAPK, PI3K-Akt and STAT pathways
(Fig. 1b). Together, these EGFR-induced signaling path-
ways control gene transcription, cell cycle progression, cell
proliferation and survival, adhesion, angiogenesis, migra-
tion, and invasion [14].

Activation of downstream signaling pathways without
the involvement or modulation of cell surface receptors is
another mechanism by which tumor cells can lose their
dependence on growth factors. Perturbations in the EGFR
signaling system may lead to the same effects as modula-
tion of the EGFR alone: uncontrolled cell growth and
proliferation, suppression of apoptosis, stimulation of
angiogenesis, and increased metastatic spread (Fig. 1a).
Consequently, the EGFR axis is thought to play a central
role in the regulation of epithelial tumor cell growth,
proliferation, and malignant transformation.

EGFR-blocking therapy

Given the important role of EGFR in tumorigenesis and
disease progression, this receptor has become a relevant and
promising target for anti-cancer therapies. In vitro and in
vivo studies show that blocking EGFR and downstream
signaling may lead to inhibition of carcinoma cell growth,
resulting in potential benefits for cancer patients.

Two classes of EGFR antagonists have been devel-
oped and are currently used in cancer treatment (Fig. 1b).
First, anti-EGFR monoclonal antibodies bind to the
extracellular domain of the EGFR and compete with
natural ligands for binding to the receptor, thus, blocking
ligand-induced EGFR activation. Second, small-molecule
inhibitors of EGFR tyrosine kinases compete with ATP for
binding to the intracellular catalytic domain of the EGFR

Fig. 1 a Cellular responses controlled by EGFR-dependent intracel-
lular signaling. The binding of specific ligands to the extracellular
portion of the EGFR results in the formation of a functionally active
EGFR dimer with another ligand-bound EGFR or one of the EGFR-
related receptors (HER2, HER3, or HER4). Receptor dimerization
causes ATP-dependent phosphorylation of tyrosine kinase residues
within the intracellular domain of the receptors. This tyrosine
phosphorylation triggers activation of downstream signal transduction
cascades which control cell growth, development, and function.
Perturbations in EGFR-dependent intracellular signaling have been
implicated in multiple aspects of the malignant process, including
enhanced tumor cell survival and proliferation, tumor-induced
angiogenesis, and metastasis. b Signal transduction pathways con-
trolled by EGFR activation and two therapeutic approaches to block
the EGFR. Ligand-induced stimulation of EGFR induces activation of
three major signaling cascades: RAS-MAPK, PI3K-Akt, and STAT
pathways. Together, these pathways control gene transcription, cell
cycle progression, cell proliferation and survival, adhesion, angiogen-
esis, and cell migration. To suppress EGFR-dependent signaling, two
classes of EGFR antagonists have been developed. First, anti-EGFR
monoclonal antibodies bind specifically to the extracellular domain of
the receptor and inhibit ligand binding, thus preventing ligand-induced
EGFR activation. Second, small-molecule EGFR tyrosine kinase
inhibitors bind to the intracellular catalytic domain of the receptor,
thereby, inhibiting EGFR tyrosine phosphorylation and downstream
signaling pathways
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tyrosine kinase. This competition inhibits EGFR tyrosine
phosphorylation and hence suppresses downstream signaling
pathways.

Two anti-EGFR antibodies (cetuximab and panitumu-
mab) and two small-molecule EGFR tyrosine kinase
inhibitors (gefitinib and erlotinib) have been evaluated
extensively for the treatment of colorectal cancer, metastatic
non-small-cell lung cancer, squamous-cell carcinoma of the
head and neck, and pancreatic cancer where malignant
transformation depends on EGFR signaling [12]. Addition-
al EGFR-targeting agents, including monoclonal antibod-
ies, small molecules and vaccines, are currently under
investigation [15].

EGFR and colorectal cancer

Several lines of evidence have demonstrated a role for
EGFR in colorectal tumorigenesis. Preclinical data suggest
that EGFR mRNA expression and EGF levels are higher in
malignant areas of colorectal tumors than in the surround-
ing benign mucosa (as reviewed by Lockhart and Berlin
[16]). In experimental models of colon cancer, TGF-α
expression and EGFR activation allow for increased tumor
cell growth and survival [16]. Moreover, mice treated with
EGFR tyrosine kinase inhibitors and mice deficient in
EGFR develop fewer colorectal polyps compared with
untreated and wild-type mice, respectively, after challenge
with colon cancer-inducing agents [16].

In human colorectal cancer, EGFR is also associated
with tumor development and progression. The mechanisms
underlying the role of EGFR in colorectal cancer are not
entirely clear. EGFR is overexpressed in up to 82% of
colorectal cancers [6–10]. EGFR amplification, preferen-
tially of a mutant allele, is correlated with but does not
reliably predict EGFR overexpression [17]. Mutations in
the EGFR gene are rare in colorectal cancer but occur
regularly in other cancer types, such as lung cancer [18–21].

Based on the importance of the EGFR axis in colorectal
cancer, drugs that interfere with various functional domains
of the receptor have been developed, as mentioned above.
Currently, two anti-EGFR monoclonal antibodies have been
approved in several countries for the treatment of colorectal
cancer [12, 22]. Cetuximab, a human–mouse chimeric IgG1
monoclonal antibody, was the first EGFR-targeted agent
approved for the treatment of colorectal cancer [12, 23].
Panitumumab, a fully human IgG2κ monoclonal antibody,
was recently approved in the US and Europe as third-line
treatment of metastatic colorectal cancer [12, 24]. Both
antibodies have been shown to reduce the risk of tumor
progression and to improve overall survival (OS), progres-
sion-free survival (PFS) and quality of life in patients with
refractory colorectal cancer [11, 23, 25–28]. However, only
a small proportion (8–23%) of patients were observed to

achieve an objective response with cetuximab [11, 23, 25]
or panitumumab [26, 28]. Cetuximab or panitumumab
therapy is costly and might cause side effects. To optimize
benefits and reduce the risks as well as contain costs
associated with anti-EGFR treatment, the EGFR has been
evaluated as a potential marker of clinical outcomes.

EGFR overexpression is more common among tumors of
more advanced stage, tumors with worse histological grades,
and tumors with lymphovascular invasion [7, 29, 30].
Patients with colorectal carcinomas showing EGFR staining
by immunohistochemistry (IHC) in >50% of tumor cells
have a poor prognosis [8]. High EGFR expression correlates
with lower response rates in patients with advanced rectal
cancer undergoing preoperative radiotherapy [31]. These
findings suggest that EGFR overexpression is associated
with advanced disease, increased metastatic ability and poor
prognosis, although its impact on patient survival is less
conclusive [10]. However, these data came largely from
studies in which colorectal cancer patients with refractory
and/or metastatic disease were selected for anti-EGFR
therapy on the basis of an EGFR-positive status. It is likely,
with this selection bias in the population tested, that the
frequency of EGFR overexpression and its relationship to
colorectal cancer prognosis might have been overestimated
in the literature thus far. Inter-laboratory variation in the
detection of EGFR levels also contributed to uncertainty
regarding the robustness of previous conclusions. Different
methods for assessing EGFR expression have produced
different results which may or may not correlate with tumor
stage, metastatic potential, and patient outcome. There are
also divergent EGFR expression patterns between primary
and metastatic tumors, regardless of the testing method used.
Taken together, the role of EGFR overexpression in
colorectal cancer remains inconclusive and warrants further
investigation.

While EGFR overexpression is common among colo-
rectal tumors, several studies have shown that EGFR levels
are a poor predictor of response to anti-EGFR therapies. In
clinical trials evaluating the efficacy of cetuximab, treat-
ment response was not related to levels of EGFR
expression [11, 25, 28]. Cetuximab has shown efficacy in
some patients with tumors negative for EGFR as assessed
by IHC [32], while many patients with EGFR-expressing
colorectal tumors fail to respond to cetuximab [11, 25].
Similarly, a number of patients with EGFR-expressing
tumors do not benefit from panitumumab therapy [26–28].
More recently, increased EGFR gene copy number as
detected by fluorescence in situ hybridization (FISH) was
associated with response to cetuximab or panitumumab
[33]. This has been contradicted by findings that FISH
analysis of EGFR amplification does not select all
colorectal cancer patients who may benefit from cetuximab
therapy [34]. These discrepancies could be explained by
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tumor heterogeneity, presence of heterogeneous EGFR
populations with different levels of low- and high-affinity
sites, lack of standardized EGFR testing methods, and poor
correlation between EGFR protein and DNA levels [17,
35].

The EGFR gene is rarely mutated in colorectal cancer.
Less than 1% of colorectal carcinomas show mutations in
the EGFR gene, according to the Cosmic database on
somatic mutations in cancer (www.sanger.ac.uk/genetics/
CGP/cosmic/). For these reasons, EGFR mutations have
limited to no prognostic power and also do not predict
EGFR-targeted treatment outcomes in patients with colo-
rectal cancer [19]. In non-small-cell lung cancer, however,
EGFR mutations and gene amplification are closely linked
with favorable response to small-molecule tyrosine kinase
inhibitors [18, 20, 21, 36]. Of note, a recent study reported
a strong correlation between EGFR mutation status and
phosphorylation of the EGFR at tyrosine 992 (pEGFR-
tyr992) as detected by IHC [37]. Importantly, the expres-
sion of pEGFR-tyr992 also correlates significantly with
clinical responsiveness to gefitinib in pulmonary adenocar-
cinoma [37]. It remains to be determined if this approach
using specific antibodies recognizing EGFR phosphorylat-
ed forms can predict responses to anti-EGFR therapies in
colorectal carcinoma.

Biomarkers in colorectal cancer

A major challenge in selecting appropriate patients for
treatment is to identify reliable biomarkers that can predict
the outcome of anti-EGFR therapies. As discussed above,
EGFR protein expression, gene amplification, and muta-
tions have limited predictive value in colorectal cancer,
although they remain useful markers of treatment response
in lung cancer [10, 13, 18]. The search for predictive
biomarkers in colorectal cancer is now directed mainly
toward key signaling components downstream of the
EGFR.

Potential markers of alterations in EGFR-induced sig-
naling in colorectal cancer include mutations in KRAS,
BRAF, and PIK3CA genes as well as PTEN protein
expression. The role of KRAS mutations, which result in
constitutive activation of downstream EGFR signaling
pathways, as a determinant of colorectal cancer prognosis
and treatment response is discussed below.

Mutations in the BRAF gene, which encodes a serine/
threonine kinase that activates the RAS-MAPK pathway,
have been found in 4–15% of colorectal cancers [38–40].
This frequency increases to 70% in colorectal cancers with
a microsatellite instability (MSI) phenotype due to hyper-
methylation of the MLH1 promoter [41–43]. In MSI
colorectal carcinoma, BRAF mutations occur independently
of KRAS mutations and provide proliferation and survival

signals through activation of several signaling pathways
[44, 45]. Cell lines with RAS/BRAF mutations are highly
resistant to cetuximab in vitro compared with wild-type
cells [46]. One study showed no relationship between
BRAF mutations and median survival of patients with
metastatic colorectal cancer receiving bevacizumab, an
antibody against vascular endothelial growth factor-A
(VEGF) [47]. However, there are no data available on the
role of BRAF mutations in predicting clinical response to
anti-EGFR agents. Lievre et al. screened 30 colorectal
cancer patients receiving cetuximab for several mutations
including BRAF, but none of these patients had a tumor
with a BRAF mutation or a MSI phenotype [48].

The PIK3CA gene encodes the p110α catalytic subunit
of phosphoinositide 3-kinase (PI3K) protein, a critical
component of the PI3K-Akt signaling pathway downstream
of ligand-induced EGFR activation (see Fig. 1b). This
catalytic subunit can be activated by an interaction with
RAS proteins. PIK3CA mutations have been found in 10–
18% of colorectal cancers [38, 46, 49], but it is unclear
whether these mutations can predict response to EGFR-
targeted therapies. According to one in vitro study, cell lines
with activating PIK3CA mutations are resistant to cetux-
imab compared with wild-type cell lines [46]. However,
two studies failed to observe a link between PIK3CA
mutation status and cetuximab response in patients with
colon cancer [33, 48]. These data were based on only five
patients with PIK3CA mutations, possibly precluding the
ability to find a significant link between PIK3CA mutations
and treatment response. The predictive value of PIK3CA
mutations in colorectal cancer needs to be clarified in larger
studies.

PTEN (phosphatase and tensin homolog) acts as a tumor
suppressor protein by inhibiting the PI3K-Akt signaling
pathway (see Fig. 1b). Cell lines deficient in PTEN
expression are more resistant to cetuximab in vitro than
those with normal PTEN expression [46]. The loss of
PTEN protein expression negatively predicts efficacy of
cetuximab therapy in patients with metastatic colorectal
cancer [50]. In this study, 63% (10/16) of patients with
tumors that showed normal PTEN expression were able to
achieve a partial response whereas no response was
documented in 11 patients with tumors that lacked PTEN
expression [50]. Additional studies are warranted to
evaluate PTEN as a marker in the selection of colorectal
cancer patients for anti-EGFR therapies.

KRAS: a downstream target of EGFR signaling

The human KRAS oncogene is mutated in over 30% of
colorectal cancers [51]. Over 3,000 KRAS point mutations
in colorectal cancer have been reported thus far (www.
sanger.ac.uk/genetics/CGP/cosmic/). Somatic missense
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mutations in the KRAS gene lead to single amino acid
substitutions and are generally independent of EGFR
mutations [52]. The most frequent alterations are detected
in codons 12 (∼82% of all reported KRAS mutations) and
13 (∼17%) in exon 2 of the KRAS gene. Mutations in other
positions, such as codons 61 and 146, have also been
reported [51]. However, these alterations account for a
minor proportion (1–4%) of KRAS mutations and their
clinical relevance in colorectal cancer is unclear [51, 53].
KRAS mutations in codons 12 and 13 appear to play a
major role in the progression of colorectal cancer [54–56],
while mutations in codons 12, 13, and 61 are potential
biomarkers in lung cancer [57].

The KRAS gene encodes a small G-protein that functions
downstream of EGFR-induced cell signaling. This G-
protein belongs to the family of RAS proteins that are
involved in coupling signal transduction from cell surface
receptors to intracellular targets via several signaling
cascades, including the RAS-MAPK pathway (Fig. 1b).
RAS proteins normally cycle between active GTP-bound
(RAS-GTP) and inactive GDP-bound (RAS-GDP) confor-
mations (see Fig. 3). RAS proteins are activated by guanine
nucleotide exchange factors (GEFs) which are recruited to
protein complexes at the intracellular domain of activated
receptors. Signaling is terminated when RAS-GTP is
hydrolyzed to the RAS-GDP inactive complex by
GTPase-activating proteins (GAPs). Under physiological
conditions, levels of RAS-GTP in vivo are tightly controlled
by the counterbalancing activities of GEFs and GAPs.
Mutations in genes that encode RAS proteins disrupt this
balance, causing perturbations in downstream signaling
activities.

KRAS mutations result in RAS proteins that are
permanently in the active GTP-bound form (Fig. 2) due
to defective intrinsic GTPase activity and resistance to
GAPs. Unlike wild-type RAS proteins which are inacti-
vated after a short time, the aberrant proteins are able to
continuously activate signaling pathways in the absence
of any upstream stimulation of EGFR/HER receptors.
Oncogenic activation of RAS signaling pathways has
been implicated in many aspects of the malignant
process, including abnormal cell growth, proliferation,
and differentiation. KRAS mutations are, in most cases, an
early event in the development and progression of
colorectal cancers [56, 58, 59]. Consistent with this
concept, several studies have demonstrated that KRAS
mutation status is an important prognostic factor in
colorectal cancer [55, 58–60]. KRAS mutations are associ-
ated with tumors of more advanced stage, increased
metastatic potential, poor prognosis, and decreased PFS
and OS of patients [55, 56, 58, 59]. The prognostic value of
KRAS mutations in colorectal cancer is presently contro-
versial and warrants further confirmation.

KRAS mutation status may have a considerable impact
on therapeutic decisions for colorectal cancer patients.
Considering the molecular basis of EGFR-targeting agents,
blocking EGFR at the receptor level will not ablate
downstream signaling activities in tumors with KRAS
mutations and hence constitutively active RAS proteins.
Indeed, several studies have reported that KRAS mutations
confer resistance to anti-EGFR monoclonal antibodies [24,
48, 61–65]. KRAS mutations are associated with poor
responses to therapy, reduced PFS and shorter OS in
colorectal cancer patients treated with cetuximab alone or
in combination with chemotherapy [48, 62–65]. Similarly,
an analysis of KRAS mutations in tumor samples from 92%
of patients in a registrational clinical trial of panitumumab
for the treatment of metastatic colorectal cancer predicted a
lack of efficacy of panitumumab on PFS and OS in patients
with KRAS mutant tumors [24]. Taken together, these
results indicate that KRAS mutation status is an important
parameter for selecting patients for therapy: patients with
mutant tumors will not benefit from EGFR-targeted
therapies. On the basis of these data, the European
Medicines Agency (EMEA) has approved the use of
cetuximab and panitumumab for the treatment of metastatic

Fig. 2 Role of KRAS mutations in oncogenic activation of intracel-
lular signaling. The human KRAS gene, located on chromosome 12,
encodes a small G-protein that functions downstream of EGFR-
induced cell signaling. This G-protein belongs to the family of RAS
proteins involved in signal transduction pathways that regulate cell
development and function. RAS proteins normally cycle between
active (RAS-GTP) and inactive (RAS-GDP) conformations. Somatic
missense mutations in codon 12 of the KRAS gene, leading to single
amino acid substitutions such as p.Gly12Val, are the most common
alterations found in colorectal tumors. These KRAS mutations result in
RAS proteins that are constitutively in the active RAS-GTP
conformation. Unlike wild-type RAS proteins which are deactivated
after a short time, the mutated RAS proteins cause continuous
activation of RAS signaling pathways in the absence of upstream
stimulation of EGFR/HER receptors. This oncogenic activation of
RAS signaling pathways leads to abnormal cell growth, proliferation
and differentiation
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colorectal cancer in patients who carry a normal, wild-type
KRAS gene [12]. However, as only a fraction of patients
with colorectal tumors that carry a wild-type KRAS allele
can achieve a clinical response with EGFR-targeted
therapies, the search for additional predictive parameters
remains an important challenge.

Methods for KRAS mutation testing

PCR has become the cornerstone of molecular diagnostic
tools, including those developed for KRAS mutation testing.
PCR assays are highly sensitive and can be easily
automated. PCR assays are thus well-suited for large-scale,
high-throughput diagnostic testing. For KRAS mutation
testing, however, standard PCR assays are not sufficient.
The main requirement for conclusive KRAS genotyping by
PCR assay is the ability to discriminate between different
mutant alleles and wild type. There are two main challenges
to achieving a conclusive result: one is the heterogeneity of
the testing material, and the other is differences in the
detection limits for distinct mutations. Depending on the
tissue analyzed, the amount of tumor versus non-tumor area
is variable and heterogeneous, resulting in a template
mixture in which wild-type and mutant DNA are not
present in equimolar amounts. Moreover, a cancer cell may
carry a heterozygous or homozygous KRAS mutation,
increasing the genetic heterogeneity of the tissue material
used. Differences in PCR efficiencies for the detection of
the different mutations can lead to a bias whereby certain
mutations are detected preferentially over others.

A plethora of methods is available for the detection of
mutations in the KRAS gene (see Table 1 for a non-
exhaustive overview). Many of these methods are labora-
tory-based assays and are not commercially available for
use in routine diagnostics. Other methods have been
developed further and are available as commercial test kits
not directly intended for diagnostic purposes. To date, two
KRAS mutation test kits (TheraScreen® by DxS Ltd. and
KRAS LightMix® by TIB MolBiol) have met the essential
requirements of the relevant European Directives (CE-
Mark) for diagnostic use in the European Union. Only one
study, to our knowledge, has evaluated the concordance
between different methods for KRAS mutation testing [66].
In this study, 40 colorectal tumor samples were tested for
seven common mutations in codons 12 and 13 of the
KRAS gene by four commercially available assays and by
direct sequencing as a reference. Two allele-specific PCR-
based methods and one PCR/direct sequencing method
demonstrated high to good agreement with direct sequenc-
ing, whereas an oligonucleotide hybridization method
showed poor agreement. Given the technical requirements
for a conclusive KRAS test result and the potential for

variability between different KRAS genotyping methods, a
thorough analytical validation of testing methods together
with a high standard of quality assurance are critical for
accurate, reliable KRAS mutation testing in clinical
practice. Such an initiative to validate and standardize
KRAS mutation testing will also include the development
of a website (http://esp-pathology.org) providing the latest
information on current diagnostic methods and intended
uses of KRAS mutation testing. Therefore, at present, no
advice is given to which method is preferred. The
advantage of commercially available tests is the validation
process that these have gone through, but obviously the
costs of these tests are higher that in-house developed
methods. Most experience exists in different laboratories
with sequencing after PCR, and this is a relatively
inexpensive method, but requires validation on a large
series of cases. For most other methods, it is too early to
assess the advantages and disadvantages.

Recommended guidelines and European QA program

Guidelines for KRAS mutation testing in colorectal cancer

The optimal use of EGFR-targeted therapies requires
accurate KRAS mutation testing. Testing for KRAS muta-
tions generally comprises three stages: (1) referral for KRAS
mutation testing; (2) selection of the tissue block containing
the tumor area of interest; and (3) DNA extraction and
KRAS mutation analysis. In the current clinical setting,
colorectal cancer patients are not routinely screened for
KRAS mutation status. Pathologists test for KRAS mutations
only upon the specific request of a clinician. Clinicians, in
turn, request KRAS genotyping only if the test results are
intended to guide decisions on patient management. These
practices might not be sufficient for optimal patient care.
The process of requesting KRAS status testing, finding the
original tissue block and reporting the test results is
cumbersome, time-consuming, and prone to errors. There-
fore, routine mutation testing at the time of initial diagnosis
of stage II and III tumors should be considered. There is
also a lack of validated testing methods and standardized
operating procedures for the detection of KRAS mutations.
There are very few studies that have systematically
compared the sensitivity, specificity and reproducibility of
the different techniques for KRAS genotyping. The concor-
dance between different diagnostic methods is also largely
unknown. Therefore, there is an urgent need to establish
and implement clinical practice guidelines and standardized
procedures for KRAS mutation testing in patients with
colorectal cancer.

In recognition of the importance of accurate HER2
testing in breast cancer management, practice guidelines
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and a testing algorithm for HER2 testing have been
formulated by the American Society of Clinical Oncology
and the College of American Pathologists [3]. This expert
panel has recommended validation of all laboratory assays
or modifications, use of standardized operating procedures,
and compliance with new testing criteria. Importantly, the
panel has also recommended that HER2 testing be done in
an accredited laboratory or in a laboratory that meets the
quality assurance and proficiency requirements set forth in
the practice guidelines.

To address the need for standardized KRAS mutation
testing methods and procedures in colorectal carcinoma,
two working groups of the European Society of Pathology
(ESP), the Diseases of the Digestive Tract ESP Working
Group and the Molecular Pathology ESP Working Group,
convened an expert panel to develop guideline recommen-
dations and a proposal for a European QA program for
KRAS mutation testing. This expert panel consisted of
European pathologists, molecular biologists, and oncolo-
gists with expertise in colorectal carcinoma and KRAS
mutation analysis. A panel meeting was held during the

Third Intercontinental Congress of Pathology in Barcelona
in May 2008. The purpose of this meeting was for the panel
members to refine and agree on draft guidelines and an
organizational structure of a European QA program for
KRAS mutation testing. Consensus recommendations and
proposals are summarized here.

Target patient population for KRAS mutation testing

Activating mutations in codons 12 and 13 of the KRAS
gene identify patients who have a poor clinical response to
EGFR-targeted therapies. Ideally, a predictive test should
distinguish between treatment responders and non-respond-
ers accurately and reliably. Such an ideal predictor is
presently not available. The best option available today is a
test that identifies patients who carry two wild-type KRAS
alleles and excludes patients with mutant codon 12 or 13
alleles.

The anti-EGFR antibodies, cetuximab and panitumu-
mab, currently available for clinical use have been
approved in several countries for the treatment of patients

Table 1 Overview of methods used for KRAS genotyping

Method Intended use Ref.

Gel electrophoresis assays
Temporal temperature gradient electrophoresis LBM [67]
Denaturing gradient gel electrophoresis LBM [68]
Constant denaturant capillary electrophoresis LBM [69]
SSCP assay LBM [70]
Sequencing
Dideoxy sequencing LBM, RUO kit [71]
Pyrosequencing LBM [72, 73]
PyroMark™ KRAS RUO kit
Allele-specific PCR assaysa

Allele discrimination based on primer design
ARMS-PCR LBM [74, 75]
KRAS mutation test kit RUO kit
TheraScreen® kit CE-Mark kit for clinical use [76]
KRAS LightMix® kit CE-Mark kit for clinical use
REMS-PCR LBM [77]
FLAG assay LBM [78]
Enriched PCR-RFLP LBM [79]
Allele discrimination based allele-specific ligation detection reaction
PCR-LDR LBM [80]
PCR-LDR spFRET assay LBM [81]
Allele discrimination based on discriminating amplification efficiencies at low melting temperatures
COLD-PCR LBM [82]

Other methods
Surface ligation reaction and biometallization LBM [83]
Multi-target DNA assay panel LBM [84]
Allele-specific oligonucleotide hybridization—Invigene®
KRAS genotyping kit LBM, RUO kit

LBM Laboratory-based method, not commercially available, RUO: research use only, not validated for clinical applications
a Allele-specific assays are also used by vendors offering KRAS genotyping services
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with KRAS wild-type metastatic colorectal cancer. In the
European Union, cetuximab has been approved for use in
combination with chemotherapy or as a single agent in
patients who are refractory or intolerant to irinotecan-based
chemotherapy. Similarly, panitumumab has been approved
as third-line treatment for refractory metastatic colorectal
cancer. Routine testing for KRAS mutations might not be
beneficial for patients with stage I colorectal carcinoma.
However, this expert panel recommends standard KRAS
mutation testing for all patients with stage II to III
colorectal carcinomas.

The role of the primary pathologist in KRAS mutation
testing

The primary pathologist plays a central role in KRAS
mutation testing. The pathologist can either perform the test
at his/her laboratory if it has been accredited for KRAS
mutation testing or send the tissue block to a reference
laboratory for external testing. In both situations, the
pathologist is responsible for at least three important
procedures. First, the pathologist is responsible for choos-
ing the most appropriate tissue block to be tested (see
below for discussion on optimal material for testing).
Second, the pathologist should ensure that the tissue block
selected for KRAS genotyping contains sufficient quantity
of invasive tumor cells needed for analysis. The minimum
amount of tumor versus non-tumor area required will
depend on the KRAS genotyping method. It is the
pathologist’s responsibility to evaluate the tumor content
of the tissue block and to ensure that it fulfills the minimum
criterion of the testing method. To evaluate tumor content,
it is recommended that the pathologist assess a hematoxy-
lin–eosin (HE) stained section of the tissue area of the
paraffin block designated for DNA extraction and KRAS
mutation analysis before and after DNA extraction. This
will ensure that the tissue area has an adequate tumor
density, preferably greater than 70% invasive carcinoma
cells, needed for detection of KRAS mutations. Finally, the
pathologist is responsible for documentation, which should
include results from HE staining analysis as well as from
KRAS mutation testing, and for preparation of the pathol-
ogy report (see below on optimal reporting of KRAS test
results). If the testing is performed by a reference
laboratory, the pathologist should integrate the test results
into the pathology report.

Optimal tissue material for KRAS mutation testing

Based on current knowledge, the most appropriate material
for KRAS mutation testing is primary tumor tissue. This
type of material is commonly archived and thus accessible,
and typically contains sufficient amount of invasive

carcinoma cells required for KRAS mutation testing. If an
endoscopic biopsy of the primary tumor is performed, it is
important that the material obtained contains adequate
amount of adenocarcinoma cells in the area identified.

However, it is estimated that 20% of the target patient
population will present with metastatic disease and will not
have archival material from the primary tumor. This poses
an important challenge for the pathologist in the selection
of appropriate material for KRAS mutation testing. In this
situation, the panel recommends that KRAS mutation testing
is performed using material from the metastatic tumor, for
example, from resected liver metastases or positive lymph
nodes. The pathologist must ensure that the metastatic
tissue block contains adequate amount of adenocarcinoma
cells.

For some patients, both the primary tumor tissue as well
as metastatic tissue specimens might be available for KRAS
mutation testing. At present, there are insufficient data
available to demonstrate the superiority of either primary or
metastatic tissue material for KRAS mutation testing. In the
experience of this expert panel, primary and metastatic
tumor tissues from the same patient can give discordant
results on KRAS mutation status. However, the true
discordance in KRAS genotyping results between primary
and metastatic tumor tissues is presently unknown. More
studies are needed to better define which type of material
can provide the most reliable results in patients with
metastatic disease. Until such data are available, the panel
recommends that, in accordance with existing literature
data, primary tumor tissue is tested, but that, ideally, both
primary and metastatic tumor tissues are analyzed for KRAS
mutation status and that the results are collected in a central
database to increase our knowledge. In case the results are
discordant, presently no evidence is available to advise
standard treatment and the patient needs to be discussed in
a multidisciplinary team.

In general, a paraffin block containing only tissue from
adenoma or non-invasive carcinoma should not be used for
KRAS mutation analysis. If an endoscopic biopsy of the
primary tumor or a biopsy of a metastatic site is performed,
the pathologist should ensure that malignant cells are
present in the biopsy material to be tested and clearly
indicate which blocks or slides should be used for testing.

Optimal procedures for KRAS mutation testing

To ensure accurate KRAS mutation testing, the panel
recommends that each laboratory develops standardized
operating procedures and testing requirements for KRAS
mutation analysis using available information that will be
provided by either the vendors of a commercially available
method or the ESP-website (see below). Recommendations
for specific testing parameters, including method sensitivity
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and specificity, method validation, analysis success rate,
and documentation of costs, are summarized in Table 2.
Some of these recommendations are compatible with ISO
(International Organization for Standardization; http://www.
iso.org) general requirements for the competence of testing
and calibration laboratories (ISO/IEC 17025:2005). These
requirements will become essential components of accred-
itation for KRAS mutation testing. Tests that have a
detection sensitivity of 1% might detect subclones in a
tumor that have acquired a mutation. It is presently
unknown what the consequence of such a finding might be.

Optimal reporting of test results

Result reporting is an integral part of any diagnostic
procedure, including KRAS mutation testing. All KRAS test
results are to be reported to the primary pathologist who is
responsible for preparation of the pathology report for a
specific tissue block or biopsy material. Optimal reporting
of KRAS test results should conform to the OECD Guide-
lines for Quality Assurance in Molecular Genetic Testing
(http://www.oecd.org). In brief, the reports should include
at minimum the following information: (1) identification of
the patient and health care professional; (2) type of material
and percentage of tumor cells present in the sample; (3)
indication for testing and patient-specific medical data; (4)
the testing method used, including its analytical sensitivity
and specificity; and (5) test results (mutant or wild-type
KRAS allele) and interpretation of results in the context of
the indication for testing.

Proposal for a European quality assurance program

During the process of developing a European QA program
for KRAS mutation testing, the expert panel considered the
experience with HER2 testing as an informative example.
While trastuzumab (Herceptin®) became available in 2002
for the treatment of breast cancer, it was another 5 years
before clinical practice guidelines were established for
optimal HER2 testing algorithm and proficiency require-
ments. Another problem encountered with the introduction
of trastuzumab was the lack of adequate financial provi-
sions for diagnostic testing, although some national
authorities required mandatory HER2 testing in breast
cancer patients prior to trastuzumab therapy. Today,
molecular diagnostic tools, testing procedures and the
reimbursement process for diagnostic tests linked to a
specific medication differ greatly across countries in
Europe. Clearly, there is a need to establish a standardized,
evidence-based QA program for molecular diagnostics
across the European Union.

Here, we propose to establish a European QA program
for testing KRAS mutations in colorectal cancer. This
program aims to ensure optimal accuracy and proficiency
in KRAS mutation testing across all countries or institutions
in the European Union. A potential framework for a
European QA program for KRAS mutation testing is shown
in Fig. 3. The program will be organized by the European
Society of Pathology in close collaboration with existing
regional and/or national QA programs. Laboratories can
participate in the European QA program at the regional or

Table 2 Recommendations for KRAS mutation testing

Parameter Recommendation

Sensitivity The lower detection limit of mutant signal should be set at 1% of tumor cells for allele-specific PCR and 25–30% for direct
sequencing.

Specificity A specific test should be able to detect 7 common mutations in codons 12 and 13 of the KRAS gene and not detect mutations
in codon 61. False negatives may occur because of test specificities (e.g. lack of an allele-specific PCR for codon 13
mutation).

Method
validationa

The laboratory should use a validated method for KRAS mutation testing. The objectives of the validation are to:
Determine the minimum tumor tissue area and section thickness for DNA extraction.
Stipulate which fixatives are acceptable for use.
Determine input DNA quantity, quality and concentration.
Determine the cut-off values for discerning KRAS mutant alleles from wild-type alleles.
Evaluate sensitivity of the test, for example by using dilution series cell lines.
Compare the accuracy of test results against a pre-defined reference method (e.g. direct sequencing).
Determine the reproducibility between different testing assays and equipment.
Verify the robustness of the testing method. Robustness may be influenced by several factors, including varying DNA
concentrations and the use of manual or automated protocols or equipment.

Analysis
success rate

A laboratory should obtain the following success rates for accreditation:
95% of samples with successful DNA extraction
97% of samples with correct KRAS test results

Costs Costs of KRAS mutation testing should be calculated and documented for national reimbursement schemes.

a Compatible with accreditation requirements of ISO/IEC 17025:2005
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centralized level, depending on the country’s specific
circumstances. Laboratories in countries with existing QA
programs may attain accreditation at the regional level,
whereas a centralized program will be created to coordinate
QA activities for countries or institutions not yet engaged in
a QA program.

The fundamental initiatives of the proposed European
QA program are as follows:

1. The European QA program for KRAS mutation testing
aims to provide timely, standardized, evidence-based
guidelines for the performance of a diagnostic test for
KRAS mutations on colorectal tumor tissues.

2. The European QA program intends to collaborate
with existing regional and/or national QA programs
to develop strategies and standardized procedures that
help to ensure optimal performance, interpretation
and reporting of KRAS mutation analysis. To achieve
this, the European QA program will provide adminis-
trative and logistic support and networking opportuni-
ties for the development and implementation of
standardized operating procedures and QA criteria for
proficiency testing and competency assessments. The
European QA program will also coordinate accredita-

tion of participating laboratories at the European and
regional level.

3. The European QA program will facilitate the adminis-
trative process and reimbursement discussions in each
country in the European Union by providing the
necessary documents and QA schemes for implemen-
tation and performance of diagnostic tests for KRAS
mutation analysis.

To support these proposed initiatives, the European QA
program intends to establish and maintain a website (http://
esp-pathology.org) that will provide the latest recommen-
dations, as well as, potentially, an overview of validated
laboratory methods, standardized operating procedures, and
accreditation criteria relevant for KRAS mutation testing.

As our understanding of the genetics and molecular
biology of colorectal cancer advances, other parameters will
hopefully be identified as predictors of treatment outcome.
Presently, KRAS mutation status must be considered in the
appropriate therapeutic context for each patient. The
guideline recommendations and European QA program
proposed here for KRAS mutation testing will help to
ensure that all patients who may or may not benefit from
EGFR-targeted therapies are identified in a timely and

Fig. 3 Proposed framework for a European quality assurance (QA)
program for KRAS mutation testing in colorectal cancer. The European
QA program, under the direction of a QA council, will be organized
by the European Society of Pathology in close collaboration with
existing regional and/or national QA programs. The QA program,

together with a designated coordinator, will be responsible for
establishing QA guidelines and testing criteria, implementing the
QA program and performing laboratory accreditation. Participating
laboratories can attain accreditation at the regional or centralized level
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consistent manner. Although the proposed QA program is
intended for the standardization of KRAS mutation testing
methods and procedures, this expert panel is of the opinion
that such a program can potentially be adapted to
incorporate other predictive biomarkers in colorectal cancer
as they become available.

Conclusions

Colorectal cancer is a major cause of cancer-related
mortality. The EGFR signaling pathway is frequently
activated in colorectal cancer and has been extensively
investigated as a target for cancer therapy. Therapeutic
agents that target the EGFR have improved outcomes for
patients with colorectal cancer, although they are effective
in only a subset of patients. Point mutations in codons 12
and 13 of the KRAS oncogene are predictive of poor
response to EGFR-targeted therapies. Testing for KRAS
mutation status is, therefore, a potential strategy to select
those patients who will or will not benefit from EGFR-
targeted therapies. Although many robust techniques have
been developed for KRAS genotyping, most of these
techniques or testing procedures have not been validated
in the clinical setting. Thus, there is an urgent need for
validated methods and standardized testing procedures to
ensure accurate testing of KRAS mutation status. Here we
propose guideline recommendations and a European quality
assurance program for KRAS mutation testing in patients
with colorectal carcinoma.
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